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The Oguchi approximation is shown to give an upper bound on the 
magnetization for spin 1/2 Ising models with arbitrary ferromagnetic pair 
couplings. The resulting bound on the critical temperature is shown to better 
than the mean field bound. For ferromagnetic spin-l/2 models where the three- 
body approximation predicts a unique magnetization, this too is shown to give a 
magnetization bound and an even better bound on the critical temperature. 

1. INTRODUCTION 

Mean field theory gives a good first approximation of the behavior of general 
ferromagnetic spin models. Griffiths m first noticed that for spin-l/2 
ferromagnets one could show that the mean field critical temperature was 
more than an approximation; it gives a rigorous upper bound to the true 
critical temperature. Using the Dobrushin uniqueness theorem 
C a s s a n d r o e t a l .  ~2) were able to extend this result to a large class of one- 
component models. Subsequently Driessler et  al. ~3) and Simon t4) have shown 
that this bound also holds for multicomponent, Heisenberg-like spin models. 
Attention was also brought to the mean field magnetization by other 
researchers. For the spin-l/2 model, Thompson (5) proved that the mean field 
magnetization was an upper bound to the true magnetization. This result has 
recently been extended to one-component and multicomponent models by 
Pearce, ~6) Newman, ~v) Slawny, ~8) and Tasaki and Hara. (9) We note that this 
automatically implies the related temperature bound. 

Extensions of mean field theory, such as the Oguchi tx4) and Bethe <15) 
approximations, are higher-order approximations which one believes give 
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better descriptions of the spin models. As mean field theory may be 
considered a one-body approximation, so the Oguchi method corresponds to 
a two-body approximation. In this paper we will show that the Oguchi 
method also gives an upper bound on the magnetization and a bound on the 
critical temperature of general ferromagnetic spin-l/2 models. For those 
models where the three-body approximation predicts a unique magnetization, 
we will show that it too gives a bound on the magnetization and an even 
better bound on the critical temperature of general ferromagnetic spin-l/2 
models. 

The proof is a modification of Pearce's proof of the mean field bound. 
The magnetization bound for the infinite lattice spin system is reduced to an 
algebraic inequality. This inequality is proven by induction and some facts 
about spin-1/2 systems. Once one has the magnetization bounds, the results 
on transition temperatures follow from working with explicit functions. 

For spin-l/2 models these are the strongest results to date for general 
ferromagnetic coupling. For nearest-neighbor models, stronger results exist 
for the magnetization bound (Krinsky (1~ and the transition temperature 
bound (Krinsky(l~ Fisher(11)). 

2. THE MODELS 

Let A be a finite lattice with periodic boundary conditions. We assume 
A can be written as a disjoint union of identical smaller lattices X~, i.e., A = 
(..)~ X~. At each site i in A there is a spin-l/2 Ising variable s taking values 
in ~ = {--1, 1 }. The Hamiltonian is defined by 

1 
~'7~- 2 Z Ji jsisj-  h ~ s i 

i , j E A  lEA 

where Jij>/O and h >/0 are ferromagnetic couplings and J i j = J ( l i - j l )  is 
translation invariant. We write Ji(X) = ~__~.r for any fixed Xe{X,}, and 
use the convention that Ju = 0. We a s s u m e  Ji(X) < oo for any X. For the 
Oguchi approximation Ji(X) is independent of i but for the three-body case 
there usually is i dependence. The spin space for the lattice is Is] = @i~a I2i; 
we use normalized counting measures, and expectations are defined as 

where fl = 1/kT is the inverse temperature. Until Section 5 we absorb/~ into 
the couplings Jq and h. The magnetization of the model is 

( s i ) =  lim (si)a 
IAI ~ o ~  
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and the spontaneous magnetization is limh~0(si), both of which are 
independent of i ~ A .  By general results, in the limit as IAI-4 oo this 
magnetization is the same as that obtained by plus-boundary conditions. 

3. THE APPROXIMATIONS 

One obstacle to solving the lattice model exactly is that the 
configuration sum with the Boltzmann factor is hard. Since each spin has 
one degree of freedom, in the thermodynamic limit, the sum has an infinite 
number of degrees of freedom. Mean field theory avoids this problem by 
making a self-consistent approximation. All spins save one are replaced by 
an effective average magnetization. The magnetization of this last spin is 
then calculated exactly in this effective field. Consistency is obtained by 
demanding that the calculated magnetization be equal to the assumed 
magnetization of the other spins. The number of degrees of freedom has been 
reduced to one and this new model is tractable. This is the basis for calling 
mean field theory a one-body approximation. Thus, the mean field approx- 
imation consists of using the region X =  {s} and the Hamiltonian 

= [ - m J i ( X )  - his 

to find the largest root m of the equation 

m = (s)x,~r~ 

For spin-1/2, this reduces to the familiar 

(z ) m = tanh Jom (1) 
" j ~ A  / 

The extensions to mean field theory considered here use the same basic 
self-consistency approach. However, now one has a privileged region X as 
opposed to a privileged spin, exterior to which all spins are replaced by their 
assumed effective average magnetization. The spins in the interior of X take 
values in/2,  their proper spin space. In general we call a method an n-body 
approximation if the number of spins in X is n. The Hamiltonian in use is 
then 

1 
-- 2 Z J;ss;s~- Z [h + mS,(X)] s, 

i , j ~ X  i~X 

and one imposes the consistency condition 

m ---- (s)x, o 
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The largest such m for a given set of Jij" and h is taken to be the 
magnetization of the simplified model. 

For the Oguchi approximation, the region X is taken to be any set of 
two spins, although in practice one uses two nearest neighbors. One point to 
notice is that the magnetization predicted may a priori depend on which site 
in X one uses for this self-consistent procedure. Since the coupling Jij = Jj'i, it 
is easy to see that the expected magnetization of both spins in the region X 
will be the same, and so the Oguchi magnetization is unambiguous. If for 
some model the sites or couplings are chosen so that the predicted 
magnetization is site dependent, the proof of the Oguchi bound may be 
modified so that the Oguchi bound corresponds to the larger of the two 
predicted magnetizations, The Oguchi region is X =  {s, t}, the coupling 
between spins s and t is J, and the Hamiltonian is 

= -Jst - [h + Ji(X)m](s + t) (2) 

For the three-body approximation, if the three sites are equivalent, say by 
symmetry, there is an unambiguous magnetization and this is an upper 
bound. If the three sites separately predict different magnetizations, the 
present proof breaks down and one does not have a bound. For the 
symmetric case, the three-body Hamiltonian in a region X =  {s, t, u} is 

~3,sym = --J(st + tu + su) -- [h + m J i ( X ) ] ( s  Ai- t AI- U) (3) 

where J is again the pair coupling in the region X. 

4. PROOF OF THE MAGNETIZATION BOUNDS 

Theorem 1. If there is an m, m only a function of fl, such that 

for all Pi integral and non-negative, then 

(m - s ) A , . >  0 

Proof. Following Pearce (6) we write 

1 , 
~ =  ~ J i~(X~, ) - -T~  [JijCm-si)(m--sj)--Jijm 2] 

Xa~A 

In the second sum, ~2', we sum over all pairs i and j where i and j lie in 
different X~'s. We have 

( m - s ) A . ~ = Z - l  ( ( m - s ) e x p  [ ~  ' 1 ~-JiJ(m-- si)(m-- sJ)] } a,~r.(x~ , 
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where 

By expanding the exponential in a Taylor  series, (m -- s)A,~,, factors over 
regions X,~ and by hypothesis each resulting expectation is non-negative. 
Therefore 

m > / ( S ) A , ~  (5) 

For  any given A, the best bound m is the min imum m such that Eq. (4) still 
holds; however, any greater value of m will still be a bound. Writing this A 
dependence out explicitly as m A,  we find that  an examination of the specific 
form of m A, say, e.g., Eq. (9) for the Oguchi approximation,  shows that m A 

is an increasing function of tA I. Since m A ~< 1 for all A, limlAl,~o m A = rn 
exists. Then we know from Eq. (5) that  m > / ( s )  for the thermodynamic  limit. 
This infinite volume rn will be the desired upper bound. 

We will show that  the hypothesis (4) is true for sp in- l /2  models by 
using the following lemma. 

Lemma 1. If 

then 

Ker(m - s) p s a ~ ( - ) ~  and 0 ~< m ~< 1 
[sl 

Ker(m - s )  p + I  s a ~ (__)a 
[sl 

Here s is taken to be any s i. Since s is spin 1/2, a = 1 or 0 exhausts all the 
possibilities. " ~ "  is a shorthand for "has  the sign of" and (_)a  will mean 
nonnegative [also written (+)]  or nonpositive, as a = 0 or 1, respectively. 
We are only interested in the sign of this sum since we only wish to show 
that the left-hand side of  Eq. (4) ~ (+).  p will be any positive integer and 
Ker (short for Kernel)  will be any function. Later we will take [k is non- 
negative and typically equal to h + mJ;(X)] 

Ker = e x p [ J s t  + k ( s  + t)] 

and 

Ker = { e x p [ J s t  + k ( s  + t)]}(m - t)  q t b 

for the Oguchi model. 
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The idea behind the proof is to introduce a dummy sum. By coupling 
this dummy sum to the assumption, and letting the coupling go to infinity, 
one makes the p --+ p + 1 transition. We get information about the sign of the 
sum by examining the coupled system at arbitrary finite coupling. Since this 
sign will not depend on the magnitude of the coupling, we get the result for 
the infinite coupling limit. We note this idea is suggested by Griffiths. (12) 

Proof. Let u be a dummy variable. For spin 1/2 

eKSU 
lim = ~su 

K-+oo (Z~,y=• 2e~XY) 
SO 

1 
~ Ker(m-s)P+l s~= lim 

*~+oo (~x, ,  2e~:XY) 

For any fixed K, using the identity 

~_ e ~'u Ker(m--s) p s~  (6) 
[sl,u 

e Ksu = cosh K + su sinh K 

the right-hand side (RHS) of Eq. (6) is 

 .S  cosh , 1 

+ ( s i n h K ) [ ~ K e r ( m - s ) P s a + l ] [ ~ _ ~ ( m - u ) u ]  

We calculate two of the sums explicitly: 

( m - . )  = m - X  u = m  ~ (+) 
U U 

~_~ (m--u)u =m~_.~ u - -  1 ----1 ~ (--) 
U U 

Therefore, using the induction hypothesis, we can write 

RHS of Eq. ( 5 ) ~  (+) (_)a(+)  + (_~_)(_)a+ 1(_) 
(__)o 

Since this holds for any K positive, it also holds in the limit and we have 

Ker (m- - s )  p+ls  a ~ (--)~ �9 
[s] 

With these two results we are set to show the following. 
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and 

Theorem 2. Equation (4) holds for the Oguchi  Hamil tonian .  

Proof. By the lemma,  if 

e - ~ 2 ( m  - s) p s ~ ~ ( - ) ~  for p = 1 (7) 

e_~r2(m _ s)p sa(m _ t)q t o ~ (__)a+b for p = q = 1 (8) 

we know the above equations are true for all p,  q positive. Equat ion (4) is 
jus t  the case a = b = 0 and we will have the needed non-negativity.  

Up till now we have not  specified the value of  m, let us now define 

m = moguchi where moguchi is the largest  m such that  the left-hand side of  
Eq. (7) is ident ical ly  zero for p = 1, a = 0. Explici t ly,  

That  takes care of  the case a = 0  for Eq. (7). For  a =  1, we notice 
s(m -- s) <, 0 for both s = + 1 and so the sum must  be nonposit ive,  which is 

what  was needed. 
Now Eq. (8) may  be written, using Eq. (2) for the Hamil tonian ,  

~" e-a*2(m -- s) s~(m -- t) t b 

=(coshJ)[~s ek ' (m--s )s~][~ek t (m-- t ) t~  ] 

+(sinhJ)[~s ekS(m--s)sa+'J[~Tekt(m--t)tb+l j 

By the correlat ion inequali ty G K S  II (16) we see that  m defined by ~ = 
- J s t -  k(s + t) is greater than m defined by ~ = - k s ,  which tells us that  
Y' ekS(m - s) ~ O. The signs of  the above terms are then 

e ~V2(m- s)sa(m- t)t b ~  (+)(_)a(_)b + (+)(_)a+l(__)b+l 

_ ( _ ) ~ + ~  

as needed. [] 

Theorem 3 ( three-body case). I f  X =  {s,t,u} and there is a 
Hami l ton ian  ~ on X such that  (s)  = ( t )  = (u)  = m, then Eq. (4) holds. 
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Proof. The three cases to consider are 

(i) 

(ii) 

(iii) 

e-B• ' (m - si) s~ ~ (_)a  Vi C X 
[sl 

e - ~ r ' ( m  - s,) s~(m - Sg) s~ ~ (_)a+o 
Is] 

Vi, j ~ X ,  i r  

e-~*3(m -- s) sa(m -- t) ta(m -- u) u c ~ (_)a+o+c 
Is] 

where again L e m m a  1 brings us to Eq. (4). As before, define m = m3_body 

w h e r e  m3_body is the largest m such that  the left-hand side of  (i) is identically 
zero for a = 0, and then (i) is satisfied. Case (iii) can be shown by rewriting 
the coupling terms in the Bol tzmann factor as cosh and sinh as done in 
Theorem 2. We demonstrate  Case (ii) by using G K S  II, which says 

( s ) ( t )  - (s t )  ~ o 

Let y be a dummy variable. The left-hand side (LHS)  of  Case (ii) is 

cKty 
L H S ( a = O , b = O o r l ) =  lira ~ 2eKx~) e - ~ r 3 ( m _ s ) t (  m y)yb  

K ~  ~,j,~ (y~ 

Fix K. The R H S  may  be written as 

d 
+ ( s i n h K )  [ ~ [ s l e - ~ a % ( m - - s ) ] l ~ ( m - - y ) Y ~  ] 

(+)(_)(_)b + (+)(+)(_)b+~ 

~ (_)~+l 

as needed. The case ( a =  1, b = 0 )  may  similarly be shown. Since 
s(m - s) <~ O, s(m - s) t(m - t) ) O, which takes care of  the case a = b = 1. 
This exhausts the possibilities and Case (ii) is shown. �9 

5. PROOF OF THE CRITICAL TEMPERATURE BOUNDS 

The magnetizat ions predicted by the Oguchi and three-body 
Hamil tonians have been shown to be upper bounds on the magnetizat ion of 
the true Hamil tonian.  We expect these magnetizat ion bounds to be a 
decreasing series as the number  of  spins in X is increased. To get a quan- 
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titative feel for these bounds, we now examine the critical temperatures 
predicted by these two methods. In this section we will explicitly show the fl- 
dependence. 

Theorem 4. Given a Hamiltonian ~ we have 

To(true ) ~ To(symmetric three-body) ~< T~(Oguchi) ~< T~(mean field) 

We recall that the critical temperatures of the approximation schemes are 
obtained as the solution to 

~ ( S ) A , ~ V  = 1 
8m m=0 

Using the explicit equation obeyed by the magnetization for the mean field 
approximation, Eq. (1), the mean field critical temperature is determined by 

flMV ~'~ Jig = 1 (10) 
J 

The corresponding equation for the Oguchi case is (rio = floguchO 

flo (~  J q - J )  (l +tanhJflo)= l (11) 

and the symmetric three-body case gives 

( tanh Jfl3 + tanh2 Jfl3 

We remark that examination of the proofs below show that equality is 
obtained only for the pair coupling J = 0 and that otherwise one has strictly 
better bounds. 

ProoL Clearly all the critical temperatures are upper bounds to the 
true transition temperature. We show that 

Z (tic,Mr - flc,oguch,) J,~ <~ o 
J 

which implies that Tc,oguchi ~ TC,MF. As we are now working only with 
critical temperatures, henceforth we drop the subscript c. By Eqs. (10) and 
(11 ), we have 

Z jij(flMV__flo)= l _  ( 1 ) j 1 + tanh flo J + fl~ 
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Examine the RHS.  Let x = flo J and note that x is non-negative. When x = 0, 
the RHS = 0. Now 

1 1 
c~ (RHS)  = (1 + tanh x) z " cosh 2 x 1 

Since this is negative for all positive x, we see that  the RHS is nonpositive, 
as needed. 

To show f13/> fl0, we note that if 

( an  Xtanh 3+tanh  x l x + 
then g(x) is an increasing function of positive x. We will show that  
g(flo)<~ 1. Since g ( f l3 )=  1, this implies that f l 3 ) f lo .  I f  y = f l o  J and 
T = tanh y, clearly 

T T (1 + T - -  r 2) 

Y / > ~ >  ( I + T )  ( I + T + T  2) 

Then 

1 1 
q - y ~ <  

I + T  1 + 2  T 3 + l  

But 

1 
1 + T - Z J;J ~0 - 2Jr 

J 

by Eq. (11) so we have shown g(f lo)~ 1. �9 

We present some sample calculational results obtained with these 
methods. The values for TC,MF and Tc, o are obtained from Eqs. (10) and 
(11). We remark that while each of the three spins in the three-body model is 
predicting zero magnetization,  this is a bound on the magnetization. Thus we 
can obtain an upper bound on Tc, call it Tc, 3, corresponding to 
maxs~ x Tc,3(s ). This is what is listed under T c 3-body. For  nearest-neighbor 
models better magnetizat ion and T c bounds than our bounds may  be 
obtained by different methods. For  instance, the T c bound for the three- 
dimensional nearest-neighbor model obtained by Fisher 's  self-avoiding walk 
method (~1) is much better than our best bound, the Tc, 3 bound (see 
model A). However,  we emphasize that  our method is not restricted to 
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Table I. Critical Temperature Bounds 

Model a Mean field Oguchi Three-body Best known 

A 6 5.847 5.825 4.796 b 
B 3.290 3.021 2.897 c 

The models are: A = three-dimensional (3-D) nearest-neighbor cubic lattice; B = 1-DJij = 
[i--j[ 2 model. 
b Fisher.~l~ Best guess is T c ~ 4.684, Domb. ~17) 
c Best guess is T c ~ 1.58, Bhattacharjee et al. ~31 

neares t -ne ighbor  models.  For  these non-nea res t -ne ighbor  models  our  me thod  

gives new and  better magne t i za t ion  and  T c bounds .  As an example,  we 
ca lcula te  the T c bounds  for the one -d imens iona l  1/r  2 model  (see model  B). 
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